
1

Takashi Matsushima, Univ. of Tsukuba
Yosuke Higo, Kyoto University
Yu Otake, Tohoku University

4-cell analogical model to

describe plastic shear behavior 

of granular geomaterials

33rd ALERT Workshop – Poster Session



2Quasi-static Elasto-plastic models of 
Granular Solid
* Phenomenological EP model (Cam-clay (Schofield & Wroth 1968))

Too many ad-hoc models, too many parameters
→Physically-based constitutive model should be explored 

* Micromechanics models
Regular periodic packing models 

(Newland & Allely 1957, Rowe 1962, Matsushima & Chang 2011)

Random packing averaging models
Elastic models (Digby 1981, Christoffesen, et al. 1981, Walton 
1987, Bathurst & Rothenburg 1988, Chang & Misra 1990, etc.)
EP models (Chang et al. 1992, Chang & Hicher 2005, Matsushima 
& Chang 2007, etc.)

Cell-based models (Nicot and Darve 2011, etc.)



3Objective of this study
The present model is:
Modification of Matsushima & Chang model (2007) inspired by 

Regular packing models
Cell-based models

In this presentation, I will explain:
(1) Matsushima & Chang model (2007)

Uniform strain model with finite deformation formulation

(2) 4-cell analogical model to control contact normal force distribution

(3) Biaxial test (const. confining pressure/ const. volume) responses



4Uniform strain model  (Chang & Misra 1990)

stress σ strain ε

contact          contact
force, F displ. δ

→contact displ. 𝛿𝛿
grain rotation = continuum rotation

Particle centroids move 
sticking to the continuum strain field

Assumption:
Contact displacement
of each branch is uniquely 
determined by the bulk 
strain field



5Finite deformation formulation           
(Matsushima & Chang 2007)
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of an unloaded state

Love-Weber equation



6Contact loss & sliding  (Matsushima & Chang 2007)

Contact loss (nonlinear elasticity)
No tensile contact force
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A sufficient number of branch vectors 
are explicitly assigned in the program
→ Compute the response
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7Example of the response  (Matsushima & Chang 2007)
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Biaxial test result

No yielding

Disadvantage of uniform strain model

 

 

Branch vectors along the principal 
stress direction do not slide.

Contact normal force distribution 
does not converge.
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Proposed model (4-cell analogical model)

𝑓𝑓𝑛𝑛 (normal contact force) distribution function is modified by 4-cell 
analogical model
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4-cell analogical model (1)
First, we consider 2D regular periodic packing in the figure.

Relation between the porosity 𝒏𝒏 and a structural state parameter θ is:
𝑛𝑛 =

𝜋𝜋
4 sin2𝜃𝜃

(30° ≤ 𝜃𝜃 ≤ 45° to avoid the instable response)

The internal contact normal and tangential force in the hatched 4 cell is 𝑓𝑓𝑛𝑛 and 𝑓𝑓𝑠𝑠

𝑓𝑓1 and 𝑓𝑓2 are the sum of the external force acting on the 4 cell structure in the 
horizontal and the vertical direction, respectively. 

Then the equilibrium of the top particle is 
described by

1
2
𝑓𝑓1 = 𝑓𝑓𝑛𝑛 cos 𝜃𝜃 + 𝑓𝑓𝑠𝑠 sin𝜃𝜃

1
2
𝑓𝑓2 = 𝑓𝑓𝑛𝑛 sin𝜃𝜃 − 𝑓𝑓𝑠𝑠 cos𝜃𝜃
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4-cell analogical model (2)

1
2
𝑓𝑓1 = 𝑓𝑓𝑛𝑛 cos 𝜃𝜃 + 𝑓𝑓𝑠𝑠 sin𝜃𝜃

1
2
𝑓𝑓2 = 𝑓𝑓𝑛𝑛 sin𝜃𝜃 − 𝑓𝑓𝑠𝑠 cos𝜃𝜃

These equations together with the equation of 
the contact slip criterion, 𝑓𝑓𝑠𝑠 = 𝑐̂𝑐 + �𝜇𝜇 𝑓𝑓𝑛𝑛, 
we obtain the following equation:

𝑓𝑓1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
2𝑐̂𝑐 + 𝑓𝑓2(1 + �𝜇𝜇 tan𝜃𝜃)

tan𝜃𝜃 − �𝜇𝜇

In this presentation, 𝑐̂𝑐 = 0 is assumed for 
simplicity.
Then

𝛼𝛼 = 𝑓𝑓1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑓𝑓2

=1+�𝜇𝜇 tan 𝜃𝜃
tan 𝜃𝜃−�𝜇𝜇

is the critical aspect ratio of the orientational 
distribution function of 𝑓𝑓𝑛𝑛.

𝒇𝒇𝟏𝟏,𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍

𝒇𝒇𝟐𝟐
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4-cell analogical model (3)
Computational flow:

(1) Compute 𝑓𝑓𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑓𝑓𝑛𝑛,𝑚𝑚𝑖𝑖𝑖𝑖 from uniform strain model.

(2) Compute 𝑓𝑓1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑓𝑓𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚(1+�𝜇𝜇 tan 𝜃𝜃)
tan 𝜃𝜃−�𝜇𝜇

If 𝑓𝑓1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 < 𝑓𝑓𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚

Δ𝑓𝑓 =
𝑓𝑓𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝛼𝛼𝑓𝑓𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚

1 + 𝛼𝛼𝛼𝛼

𝑓𝑓2,𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑓𝑓𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽 Δ𝑓𝑓, 𝑓𝑓1,𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑓𝑓𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚 − Δ𝑓𝑓

where 𝛽𝛽 is a parameter to control dilation 

and model as a function of the structural parameter 𝜃𝜃 as:

β = β0
θmax − 𝜃𝜃

𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚

θmax = π/4，θmin = π/6

𝜃𝜃 = 𝜃𝜃max → 𝛽𝛽 = 0 → 𝑓𝑓1,𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛼𝛼𝑓𝑓𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑓𝑓2,𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑓𝑓𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚 (critical state)
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Biaxial Test Response
Grain size 0.1(mm)
Contact spring constant
𝑘𝑘𝑛𝑛 = 𝑘𝑘𝑠𝑠

1.0×109

(N/m)
Intergranular friction 𝜇𝜇 0.5

�𝜇𝜇 0.0, 0.5
𝛽𝛽0 2.0, 4.0

Confining pressure 𝜎𝜎𝑐𝑐 100(kN/m)
Strain increment Δ𝜀𝜀1 5.0×10-5

The results are compared with
DEM simulation 
(Matsushima 2015):

Biaxial compression with double periodic 
boundary
20,000 circular grains
Starting from various initial void ratio
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Biaxial Response (const. confining pressure)
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Biaxial Response (const. confining pressure)
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Material with different initial void ratio reaches the same critical state.
The volumetric strain also converges smoothly.
�𝜇𝜇 controls the shear strength
𝛽𝛽 controls how fast the material reaches the critical state
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Biaxial Response (const. confining pressure)
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Biaxial Response (const. confining pressure)
𝜇̂𝜇 = 𝜇𝜇 = 0.5
𝛽𝛽 = 2.0

Distribution of 𝑓𝑓𝑛𝑛 and 𝑓𝑓𝑠𝑠 is converged at the critical state.
All the contacts except principal stress direction is sliding at the critical state.
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Biaxial Response (const. volume)
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Constant volume test (undrained test) also provides reasonable response.
Transition from elastic to plastic regime will be smoother

if initial tangential contact force is imposed in each branch.

Yoshimine et al. 1998
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Conclusions
A new micromechanics model based on uniform strain model is proposed.
The model consists of

relation between void ratio (porosity) and structural parameter
model to control the critical 𝑓𝑓𝑛𝑛 distribution

Basic material parameters are
* contact stiffness and friction coefficient

Only two additional parameters to control
* aspect ratio of the critical 𝑓𝑓𝑛𝑛 distribution (shear strength)
* evolution of dilation

3D model will be straightforward.
→Comparison with experiment is ongoing.
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